地球の近傍までやってくるNEO(Near Earth Objects、小惑星や彗星など)発見の記事が新聞に時々載るようになってきた。これらは地球に衝突して大きな被害をもたらす可能性を持っており、この危険なNEOを全て検出・追跡する事を目的として、1996年3月26日に国際スペースガード財団が設立された。日本においても、同年10月20日に、日本スペースガード協会が発足した。(あすてろいどNo.97-01(通算17号)参照) 現在は、地上の望遠鏡を使ってNEOの検出が進められているが、100mサイズまでのNEOや昼間に太陽方向から接近してくるNEOを見つけるには、宇宙空間に設置された望遠鏡が必要になる。その一つとして、国立天文台の磯部氏を中心に、月面に望遠鏡を設置する構想が検討されている。(あすてろいど No.97-01(通算17号)参照)
 本資料では、地上や月面と並行して、軌道上でもNEO探索の望遠鏡を稼動させる事を提案し、その軌道を検討する。この軌道上の望遠鏡を、SpaceGuard Space Telescope (SGST)と呼ぶ事にする。筆者は、「あすてろいど」2号(1992年)において、L1, L2点でのNEOの定点観測ミッションを提案している。これらの点は、地球から約150万kmの距離にある。ところで、今年2月14日のNASA Press Release97-28では、L1点で太陽を観測しているSOHO衛星のコロナグラフのデータのmovieを公表しているが、NEOらしき物が頻繁に視野を通過しているのが分かる。本資料では、地球に接近する可能性のあるNEOを、もっと遠くから探索する軌道を2つ提案する。

1.SpaceGuard Space Telescope−1 (SGST-1)の軌道
 SGST-1の軌道として、図1の様に、地球の公転軌道上を地球から少しずつ離れて行き、10年後に戻ってくる軌道を考える。図1は、太陽−地球を結ぶ線を固定して描いている。1AUを長さの単位に採っている。この軌道では、その時点の地球には接近しないが、地球公転軌道と交差するNEOを探索する事が出来る。地球と望遠鏡の距離が最大で2AUにまでなるのが、通信の点で問題かも知れない。後で述べるように、この軌道への投入は簡単であり、1度投入すれば、保持制御は不要である。10年後に地球に再び接近する前に、その後の利用を考えて制御すればよい。
 次に、図1の軌道の実現に必要な増速量を計算する。この軌道を慣性系で描くと、図2の様になる。望遠鏡が10年後に再び地球近傍に戻ってくるためには、望遠鏡軌道の近日点半径rp は地球軌道の半径rEから1843万km小さい必要がある。望遠鏡が地球重力圏を脱出した後に、地球公転速度VEより994m/sだけ小さい速度を持たせる事ができれば、これを実現できる。

 図3に地球周回パーキング軌道からの脱出の様子を示す。地球から十分遠くに達した時の速度V∞の方向は、地球公転速度と逆方向の必要があり、図3に示す位置でΔV1(3330m/s)を加えて、パーキング軌道から脱出する事になる。
 以上の検討から、SGST-1の軌道を実現するには、高度200kmの地球周回パーキング軌道から、3330m/sの増速が必要である事が分かる。NASDAのロケットH-UAの静止衛星2トン級バージョンを使うと、約2700kgの宇宙望遠鏡衛星を投入できる。


2.SpaceGuard Space Telescope−2 (SGST-2)の軌道
 スペースガード宇宙望遠鏡のもう一つの軌道として図4に掲げたものを提案する。この軌道に乗る望遠鏡を、SpaceGuard Space Telescope-2と呼ぶ事にする。観測軌道は、地球を中心とする縦長の楕円軌道である。短軸半径が約1800万km、長軸半径が約3600万kmである。地球の作用球半径は約100万kmであるため、この軌道は主に太陽重力の下で運動し、地球重力はこの軌道の安定化に寄与している。この楕円のサイズはこれに固定する必要はなく、地球の作用球半径の数倍以上であれば問題無い。図4は黄道面内の軌道を描いたが、この回転座標系に相対的な傾斜角が約45度までならば、軌道は安定である。つまり、軌道保持の制御が不要である。この軌道は、筆者が提案しているフォボス・ランデブ軌道(火星の第一衛星フォボスを詳細に観測する軌道)と同じ原理に基づいている。しかし、この軌道を太陽-地球系に適用してSGST-2に利用しようと考え付いたのは、今年の2月3日号のAVIATION WEEK & SPACE TECHNOLOGY誌の記事 “New Orbit May Suit Satellites” を見た時である。図4の軌道サイズを選んだのは、図中の3つの制御の最初のものを、SGST-1軌道のΔV1と同じにしたためである。ΔV1の約0.5年後に加速制御ΔV2を行ない、更に1年後に減速制御ΔV3を行なって、ミッション軌道を実現している。図4ではΔV3の後、8.5年間の軌道計算を示した。各制御が僅かに誤差を持っていても、この軌道は安定なので楕円は図において上下方向に振動するが地球からESCAPEする事はない。
 3つの軌道制御を慣性系で表現すると図5となる。ロケットによる制御量ΔV1は、SGST-1の軌道と同じなので、H−UAを使えばΔV1後の衛星質量は約2700kgとなり、この後は、衛星の推進系でΔV2とΔV3を実施する事になる。比推力320秒の二液式推進系を仮定すると、ミッション軌道に投入できる衛星質量は、約1600kgとなる。SGST-1と比べると、衛星質量は60%になるが、地球から3600万km以上は離れない事、常に地球の近傍にいて実際に地球に接近するNEOを探索できる事、などの利点がある。
    

3.おわりに
 軌道上からNEOを探索するSpaceGuard Space Telescopeの軌道として2つの軌道を提案した。ここで簡単に光学系について触れる。NASDAでは、静止軌道のスペース・デブリを探索する衛星システムの検討を行なっており、そこでは1000kmの距離から1cmのデブリを見つける事を目標にしている。NEO検出では100mまでのものを全て見つけるのが目標となっており、単純に換算すると、デブリ観測の光学系を使えば1000万kmの距離から100mのNEOを検出できる事になる。SpaceGuard Space Telescope用の光学系として利用可能と考えられる。9個の望遠鏡を2000万km間隔に配置すれば、SGST-2の軌道全体をカバーする事もできる。静止気象衛星システムの様に、日米欧ロが分担して2つずつ打上げる事になれば理想的である。


 18号の目次に戻る